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Self-assembly is everywhere!
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An example of self-assembly
Lipid bilayer

Water (external environment) affects components (lipids), but
does not intend to lead them to the membrane structure.
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DNA self-assembly

Engineering Goal

Driven by

Watson-Crick complementarity A-T, C-G.

Thermodynamics

Kinetics

. . .
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DNA self-assembly
DNA tile implementation

Interactive DNA tiles are implemented in vitro as a DNA
double-crossover molecule [Winfree et al., Nature, 1998]

4 single strands (red, yellow, purple, green), called sticky ends,
enable the “tile” to interact with other “tiles”.
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DNA self-assembly
Binary counter [Barish et al., PNAS, 2009]

The gray box to the left is the seed (scaffold for assembly process)
made of DNA origami [Rothemund, Nature, 2006].
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DNA self-assembly
Binary counter [Barish et al., PNAS, 2009]
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Abstract Tile-Assembly Model (aTAM) [Winfree 1998]

Abstraction of DNA tile

s1

s2 s3

s4

abstraction

s1

s2

s3

s4

A square tile type t is an element of Γ× Γ× Γ× Γ× N, where

Γ is a set of glues (DNA sequences),

The last integer specifies its color, representing some chemical
property.
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Rectilinear tile assembly system (RTAS)

The rectilinear TAS (RTAS) is a variant of
Winfree’s aTAM system suitable for assem-
bling rectangular patterns.

Initial assembly (seed) is of L-shape;

A tile attaches if both its west and
south glues match.
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Rectilinear tile assembly system (RTAS)
Unique assembly by RTAS

An RTAS is a pair T = (T , σL), where

T a finite set of tile types

σL an L-shape seed

An RTAS uniquely self-assembles a pattern P if the pattern of any
of its terminal assembly is P.
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Rectilinear tile assembly system (RTAS)
Uniformity

An RTAS is uniform if all the glues
on the x-axis of the seed are identical
and so are those on the y -axis.

Example

The RTAS to assemble the binary
counter was uniform (see right).
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Constant colored Pats
Definition

“Any given logic circuit can be formulated as a colored rectangular pattern with

tiles, using only a constant number of colors [Czeizler & Popa, DNA 2012]”.

c-colored Pats (c-Pats)

Given: a c-colored pattern P
Find: a minimum RTAS (i.e., as few tile types as possible)

that uniquely self-assembles P.
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Constant colored Pats
Hardness

Theorem [Kari, Kopecki, Meunier, Patitz, S. ICALP 2015]

2-Pats is NP-hard.

Computer-assisted proof.

At the scale of 1-CPU YEAR, called “La plus longue
demonstration mathematique de l’Histoire.”

The proof breaks down once height (or width) of input
patterns is fixed to some constant.
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Fixed-height Pats and uniform Pats

These are two new variants of Pats to be considered.

Height-h Pats

Given: a pattern P of height h
Find: a minimum RTAS that uniquely self-assembles P.

Uniform Pats

Given: a pattern P
Find: a minimum uniform RTAS that

uniquely self-assembles P.
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Complexity of height-h, c-Pats

Below, n is the width of an input pattern.
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Min-state finite state transducer
Definition

A FST is a tuple (Σ,Q, s0, δ), where

Σ,Q, s0 : an alphabet, set of states, and initial state in Q.

δ ∈ Q × Σ→ Q × Σ : a transition function. An input-output
4-tuple δ(p, a) = (q, b) is called a (a, b)-transition or
a-transition

Encoding by FST

Given: S , S ′ ∈ Σ∗ and K ≥ 1
Decide: if ∃ a FST with at most K states that transduces

S to S ′.
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Min-state finite state transducer
Hardness

The NP-hardness of Encoding by FST problem is summarized
below.

|Σ| Proof

[Angluin, Inform. Control, 1978] 2 Complicated
[Vazirani & Vazirani, TCS, 1983] 3 Simple

This paper 2 Simple proof based on
[Vazirani & Vazirani, TCS, 1983]

for a more restricted problem
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Min-state finite state transducer
Restricted variant

Promise

Encoding by FST

Given: S , S ′ ∈ Σ∗ and K ≥ 1
Decide: if ∃ a FST with at most K states that transduces

S to S ′

and satisfies the following promises:

Each state has at most one incoming 0-transition and at most
one incoming 1-transition.

When transducing S to S ′:

K−1 (0, 0)-transitions, K (1, 1)-transitions, and 1
(0, 1)-transition is used.
The transitions are traversed in a unique specified order given
as a part of the input.
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Min-state finite state transducer
Restricted variant

Promise Encoding by FST

Given: S , S ′ ∈ Σ∗ and K ≥ 1
Decide: if ∃ a FST with at most K states that transduces

S to S ′ and satisfies the following promises:

Each state has at most one incoming 0-transition and at most
one incoming 1-transition.

When transducing S to S ′:

K−1 (0, 0)-transitions, K (1, 1)-transitions, and 1
(0, 1)-transition is used.
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Promise Encoding by FST
Proof

We will propose a reduction from 3-Partition to Promise
Encoding by FST.

3-Partition

Given: a multiset A = {a1, a2, . . . , a3n} of integers with∑
ai∈A ai/n = p and p/4 < ai < p/2,

Decide: if ∃ a partition of A into n sets, each with sum p

Theorem [Garey & Johnson 1975]

3-Partition is strongly NP-hard.
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Promise Encoding by FST
Reduction sketch

Example (n = 2, p = 3,A = {0, 0, 1, 1, 2, 2})
Set K = (3p + 1)n + 1 = 21.

S =

0K−100K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)0)

∏np−1
j=0 (02j10K−1−(2j+1)0)∏np−1

j=0 (02j+1110K−1−2j0)04110101400811010100

S ′ =

0K−110K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)1)

∏np−1
j=0 (02j10K−1−(2j+1)1)∏np−1

j=0 (02j+1110K−1−2j1)04110101410811010101

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

0/1

1/1 1/1 1/1
1/1 1/1 1/1 1/1 1/1 1/1

1/1 1/1
1/1 1/1

1/1 1/1

1/1 1/1

1/1 1/11/1 1/11/1 1/1
1/1 1/1
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Promise Encoding by FST
Reduction sketch

Example (n = 2, p = 3,A = {0, 0, 1, 1, 2, 2})
Set K = (3p + 1)n + 1 = 21.

S = 0K−10

0K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)0)

∏np−1
j=0 (02j10K−1−(2j+1)0)∏np−1

j=0 (02j+1110K−1−2j0)04110101400811010100

S ′ = 0K−11

0K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)1)

∏np−1
j=0 (02j10K−1−(2j+1)1)∏np−1

j=0 (02j+1110K−1−2j1)04110101410811010101

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

0/1

1/1 1/1 1/1
1/1 1/1 1/1 1/1 1/1 1/1

1/1 1/1
1/1 1/1

1/1 1/1

1/1 1/1

1/1 1/11/1 1/11/1 1/1
1/1 1/1

Shinnosuke Seki1 and Andrew Winslow2 The complexity of fixed-height patterned tile self-assembly



Introduction
Rectilinear TAS and uniformity of seed

Fixed-height pattern assembly
Results

Promise Encoding by FST
Reduction sketch

Example (n = 2, p = 3,A = {0, 0, 1, 1, 2, 2})
Set K = (3p + 1)n + 1 = 21.

S = 0K−100K−1

∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)0)

∏np−1
j=0 (02j10K−1−(2j+1)0)∏np−1

j=0 (02j+1110K−1−2j0)04110101400811010100

S ′ = 0K−110K−1

∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)1)

∏np−1
j=0 (02j10K−1−(2j+1)1)∏np−1

j=0 (02j+1110K−1−2j1)04110101410811010101

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

0/1

1/1 1/1 1/1
1/1 1/1 1/1 1/1 1/1 1/1

1/1 1/1
1/1 1/1

1/1 1/1

1/1 1/1

1/1 1/11/1 1/11/1 1/1
1/1 1/1

Shinnosuke Seki1 and Andrew Winslow2 The complexity of fixed-height patterned tile self-assembly



Introduction
Rectilinear TAS and uniformity of seed

Fixed-height pattern assembly
Results

Promise Encoding by FST
Reduction sketch

Example (n = 2, p = 3,A = {0, 0, 1, 1, 2, 2})
Set K = (3p + 1)n + 1 = 21.

S = 0K−100K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)0)

∏np−1
j=0 (02j10K−1−(2j+1)0)∏np−1

j=0 (02j+1110K−1−2j0)04110101400811010100

S ′ = 0K−110K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)1)

∏np−1
j=0 (02j10K−1−(2j+1)1)∏np−1

j=0 (02j+1110K−1−2j1)04110101410811010101

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

0/1

1/1 1/1 1/1

1/1 1/1 1/1 1/1 1/1 1/1

1/1 1/1
1/1 1/1

1/1 1/1

1/1 1/1

1/1 1/11/1 1/11/1 1/1
1/1 1/1

Shinnosuke Seki1 and Andrew Winslow2 The complexity of fixed-height patterned tile self-assembly



Introduction
Rectilinear TAS and uniformity of seed

Fixed-height pattern assembly
Results

Promise Encoding by FST
Reduction sketch

Example (n = 2, p = 3,A = {0, 0, 1, 1, 2, 2})
Set K = (3p + 1)n + 1 = 21.

S = 0K−100K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)0)

∏np−1
j=0 (02j10K−1−(2j+1)0)

∏np−1
j=0 (02j+1110K−1−2j0)04110101400811010100

S ′ = 0K−110K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)1)

∏np−1
j=0 (02j10K−1−(2j+1)1)

∏np−1
j=0 (02j+1110K−1−2j1)04110101410811010101

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

0/1

1/1 1/1 1/1
1/1 1/1 1/1 1/1 1/1 1/1

1/1 1/1
1/1 1/1

1/1 1/1

1/1 1/1

1/1 1/11/1 1/11/1 1/1
1/1 1/1

Shinnosuke Seki1 and Andrew Winslow2 The complexity of fixed-height patterned tile self-assembly



Introduction
Rectilinear TAS and uniformity of seed

Fixed-height pattern assembly
Results

Promise Encoding by FST
Reduction sketch

Example (n = 2, p = 3,A = {0, 0, 1, 1, 2, 2})
Set K = (3p + 1)n + 1 = 21.

S = 0K−100K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)0)

∏np−1
j=0 (02j10K−1−(2j+1)0)

∏np−1
j=0 (02j+1110K−1−2j0)04110101400811010100

S ′ = 0K−110K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)1)

∏np−1
j=0 (02j10K−1−(2j+1)1)

∏np−1
j=0 (02j+1110K−1−2j1)04110101410811010101

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

0/1

1/1 1/1 1/1
1/1 1/1 1/1 1/1 1/1 1/1

1/1 1/1
1/1 1/1

1/1 1/1

1/1 1/1

1/1 1/11/1 1/11/1 1/1
1/1 1/1

Shinnosuke Seki1 and Andrew Winslow2 The complexity of fixed-height patterned tile self-assembly



Introduction
Rectilinear TAS and uniformity of seed

Fixed-height pattern assembly
Results

Promise Encoding by FST
Reduction sketch

Example (n = 2, p = 3,A = {0, 0, 1, 1, 2, 2})
Set K = (3p + 1)n + 1 = 21.

S = 0K−100K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)0)

∏np−1
j=0 (02j10K−1−(2j+1)0)∏np−1

j=0 (02j+1110K−1−2j0)

04110101400811010100

S ′ = 0K−110K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)1)

∏np−1
j=0 (02j10K−1−(2j+1)1)∏np−1

j=0 (02j+1110K−1−2j1)

04110101410811010101

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

0/1

1/1 1/1 1/1
1/1 1/1 1/1 1/1 1/1 1/1

1/1 1/1
1/1 1/1

1/1 1/1

1/1 1/1

1/1 1/11/1 1/1

1/1 1/1
1/1 1/1

Shinnosuke Seki1 and Andrew Winslow2 The complexity of fixed-height patterned tile self-assembly



Introduction
Rectilinear TAS and uniformity of seed

Fixed-height pattern assembly
Results

Promise Encoding by FST
Reduction sketch

Example (n = 2, p = 3,A = {0, 0, 1, 1, 2, 2})
Set K = (3p + 1)n + 1 = 21.

S = 0K−100K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)0)

∏np−1
j=0 (02j10K−1−(2j+1)0)∏np−1

j=0 (02j+1110K−1−2j0)

04110101400811010100

S ′ = 0K−110K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)1)

∏np−1
j=0 (02j10K−1−(2j+1)1)∏np−1

j=0 (02j+1110K−1−2j1)

04110101410811010101

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

0/1

1/1 1/1 1/1
1/1 1/1 1/1 1/1 1/1 1/1

1/1 1/1
1/1 1/1

1/1 1/1

1/1 1/1

1/1 1/11/1 1/11/1 1/1
1/1 1/1

Shinnosuke Seki1 and Andrew Winslow2 The complexity of fixed-height patterned tile self-assembly



Introduction
Rectilinear TAS and uniformity of seed

Fixed-height pattern assembly
Results

Promise Encoding by FST
Reduction sketch

Example (n = 2, p = 3,A = {0, 0, 1, 1, 2, 2})
Set K = (3p + 1)n + 1 = 21.

S = 0K−100K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)0)

∏np−1
j=0 (02j10K−1−(2j+1)0)∏np−1

j=0 (02j+1110K−1−2j0)04110101400811010100

S ′ = 0K−110K−1∏n
i=0(02pn+(p+1)i10K−1−(2pn+(p+1)i)1)

∏np−1
j=0 (02j10K−1−(2j+1)1)∏np−1

j=0 (02j+1110K−1−2j1)04110101410811010101

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

0/1

1/1 1/1 1/1
1/1 1/1 1/1 1/1 1/1 1/1

1/1 1/1
1/1 1/1

1/1 1/1

1/1 1/1

1/1 1/11/1 1/11/1 1/1
1/1 1/1

Shinnosuke Seki1 and Andrew Winslow2 The complexity of fixed-height patterned tile self-assembly



Introduction
Rectilinear TAS and uniformity of seed

Fixed-height pattern assembly
Results

Promise Encoding by FST
Application

Theorem

The non-uniform height-2 Pats is NP-hard.

Proof. Let F = (S ,S ′,K ,Sδ) be an instance of Promise Encoding
by FST, where Sδ is a 2K -ary sequence of length n to specify the order
in which the available 2K transitions should be used. We convert F into

the height-2, (2K+2)-colored pattern P =
Sδ[1] Sδ[2] · · · Sδ[n]

S [1] S [2] · · · S [n]
.

0

0

1

1

p

0

q

for δ : p → q on 0

q

1

r · · · r

1

s Using 2K+2 tile types, one can
assemble P uniquely from a non-
uniform seed ⇔ F has a solution
(see left).
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FPT algorithm for non-uniform, height-h, c-Pats

Let P be a given c-colored pattern of height h and width n.

Being of height h, P cannot involve more than ch types of column.

One type of height-h column can be uniquely self-assembled using h
pairwise-distinct tile types (hard-coding).

Column types can be encoded along the x-axis of a non-uniform
seed.

Identical columns are assembled in an identical way, while assemblies
of columns of distinct type involve no tile type in common.

Upperbound (valid only for non-uniform seed)

T = hch tile types are enough to uniquely self-assemble P from a
non-uniform seed.
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FPT algorithm for non-uniform, height-h, c-Pats

Recall T = hch.

4 logT + log c bits are enough to specify one tile type.

Hence, 4T log cT bits are enough to specify one set of at most T
tile types.

Thus, there are at most 24T log cT = (cT )4T sets of at most T tile
types.

Dynamic programming

We can check in O(hT h+2)n time if each such set of tile types can
be employed to uniquely self-assemble P.

Consequently, O((cT )4T × hT h+2n) = TO(T )n = cc
O(h)

n time is
enough.
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Complexity of height-h, c-Pats

Below, n is the width of an input pattern.

c

h

1 2 3 ∞

1

2

3

∞

c

h

1 2 3 ∞
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∞

Non-uniform Pats Uniform Pats
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1 tile type/color

NP-hard
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ti
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cc
O(h)

n-time

N
P

-h
ar

d

O(n)-time

NP-hard

?
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Uniform Pats

Theorem

Uniform, height-2, 3-Pats is NP-hard.

Proof.
A variant of Promise Encoding by FST
→ Uniform, height-2, 3-Pats.

Remaining time < |Proof|
≤ Springer’s patience (≈ 12 pages)

� 1 CPU year.
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Thanks!!
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