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Introduction

Self-assembly is everywhere!
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Introduction

An example of self-assembly
Lipid bilayer

~— Phospholipid Bilayer ——
‘ _ Hydmphilic

J

Water (external environment) affects components (lipids), but
does not intend to lead them to the membrane structure.
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Introduction

DNA self-assembly

Engineering Goal
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Driven by
@ Watson-Crick complementarity A-T, C-G.

@ Thermodynamics
@ Kinetics
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Introduction

DNA self-assembly

DNA tile implementation

Interactive DNA tiles are implemented in vitro as a DNA
double-crossover molecule [Winfree et al., Nature, 1998]
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4 single strands (red, yellow, purple, green), called sticky ends,
enable the “tile” to interact with other “tiles”.
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Introduction

DNA self-assembly

Binary counter [Barish et al., PNAS, 2009]

tiles bind by two inputs »
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The gray box to the left is the seed (scaffold for assembly process)
made of DNA Origami [Rothemund, Nature, 2006].
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Introduction

DNA self-assembly

Binary counter [Barish et al., PNAS, 2009]
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Rectilinear TAS and uniformity of seed

Abstract Tile-Assembly Model (aTAM) (winfree 199g]

Abstraction of DNA tile

S1

51 S,

abstraction
> S4

S 53

53
A square tile type t is an element of [ X [ x ' x I X N, where
e [ is a set of glues (DNA sequences),

@ The last integer specifies its color, representing some chemical
property.
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Rectilinear TAS and uniformity of seed

Rectilinear tile assembly system (RTAS)

The rectilinear TAS (RTAS) is a variant of
Winfree's aTAM system suitable for assem-
bling rectangular patterns.
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Rectilinear TAS and uniformity of seed

Rectilinear tile assembly system

The rectilinear TAS (RTAS) is a variant of
Winfree's aTAM system suitable for assem-
bling rectangular patterns.

@ Initial assembly (seed) is of L-shape;
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Rectilinear TAS and uniformity of seed

Rectilinear tile assembly system (RTAS)

The rectilinear TAS (RTAS) is a variant of
Winfree's aTAM system suitable for assem-
bling rectangular patterns.

@ Initial assembly (seed) is of L-shape;

@ A tile attaches if both its west and
south glues match.
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Rectilinear TAS and uniformity of seed

Rectilinear tile assembly system (RTAS)

The rectilinear TAS (RTAS) is a variant of
Winfree's aTAM system suitable for assem-
bling rectangular patterns.

@ Initial assembly (seed) is of L-shape;

@ A tile attaches if both its west and
south glues match.
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Rectilinear TAS and uniformity of seed

Rectilinear tile assembly system (RTAS)

The rectilinear TAS (RTAS) is a variant of
Winfree's aTAM system suitable for assem-
bling rectangular patterns.
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Rectilinear TAS and uniformity of seed

Rectilinear tile assembly system (RTAS)
Unique assembly by RTAS

An RTAS is a pair 7 = (T,0.), where
T a finite set of tile types

or an L-shape seed

An RTAS uniquely self-assembles a pattern P if the pattern of any
of its terminal assembly is P.
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Rectilinear TAS and uniformity of seed

Rectilinear tile assembly system (RTAS)

Uniformity

An RTAS is uniform if all the glues
on the x-axis of the seed are identical
and so are those on the y-axis.

The RTAS to assemble the binary
counter was uniform (see right).
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Fixed-height pattern assembly

Constant colored PATS

Definition

“Any given logic circuit can be formulated as a colored rectangular pattern with

tiles, using only a constant number of colors [Czeizler & Popa, DNA 2012]".

c-colored PATS (c-PATS)

GIVEN: a c-colored pattern P
FIND:  a minimum RTAS (i.e., as few tile types as possible)
that uniquely self-assembles P.
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Fixed-height pattern assembly

Constant colored PATS

Hardness

Theorem [Kari, Kopecki, Meunier, Patitz, S. ICALP 2015]
2-PATS is NP-hard.

e Computer-assisted proof.

@ At the scale of 1-CPU YEAR, called “La plus longue
demonstration mathematique de I'Histoire.”

@ The proof breaks down once height (or width) of input
patterns is fixed to some constant.
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Fixed-height pattern assembly

Fixed-height PATS and uniform PATS

These are two new variants of PATS to be considered.

Height-h PATS

GIVEN: a pattern P of height h
FIND: a minimum RTAS that uniquely self-assembles P.

Uniform PATS

GIVEN: a pattern P
FIND: a minimum uniform RTAS that
uniquely self-assembles P.
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Results

Complexity of height-h, c-PATS

Below, n is the width of an input pattern.

h h
OOT NP-hard OOT
g j= 8 NP-hard
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3 2 <" n-time o 3 2
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Results

Min-state finite state transducer

Definition

A FST is a tuple (X, Q, sp,0), where
>, @,sp : an alphabet, set of states, and initial state in Q.

0 € QXX — QxX : atransition function. An input-output
4-tuple 6(p, a) = (q, b) is called a (a, b)-transition or
a-transition

ENcopING BY FST

GIVEN: S, SeY*and K>1
DEcIDE: if 3 a FST with at most K states that transduces
Sto S
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Results

Min-state finite state transducer

Hardness

The NP-hardness of ENCODING BY F'ST problem is summarized
below.

|X| | Proof

[Angluin, Inform. Control, 1978] | 2 Complicated

[Vazirani & Vazirani, TCS, 1983] | 3 Simple

This paper 2 Simple proof based on
[Vazirani & Vazirani, TCS, 1983]
for a more restricted problem
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Results

Min-state finite state transducer

Restricted variant

ENcobpING BY FST

GIVEN: S5, S eY*and K>1
DEcIDE: if 3 a FST with at most K states that transduces
Sto S
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Results

Min-state finite state transducer

Restricted variant

ProMISE ENCODING BY FST

GIVEN: S5, S eY*and K>1
DEecCIDE: if 9 a FST with at most K states that transduces
S to S’ and satisfies the following promises:
@ Each state has at most one incoming O-transition and at most

one incoming 1-transition.

@ When transducing S to S':
e K—1 (0, 0)-transitions, K (1, 1)-transitions, and 1

(0, 1)-transition is used.

e The transitions are traversed in a unique specified order given
as a part of the input.
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Results

ProMmiISE ENCcODING BY FST
Proof

We will propose a reduction from 3-PARTITION to PROMISE
ENcobpING BY FST.

3-PARTITION

GIVEN: a multiset A= {ai1,az,...,a3n} of integers with

Za,»eA aj/n=pand p/d < a; < p/2,
DEcCIDE: if 3 a partition of A into n sets, each with sum p

Theorem [Garey & Johnson 1975]
3-PARTITION is strongly NP-hard.
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Results

ProMmiISE ENCcODING BY FST
Reduction sketch

Example (n=2,p=3,A=1{0,0,1,1,2,2})
Set K=CBp+1)n+1=21

S =

s =
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Results

ProMmiISE ENCcODING BY FST

Reduction sketch

Example (n=2,p=3,A=1{0,0,1,1,2,2})
Set K=CBp+1)n+1=21
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Results

ProMmiISE ENCcODING BY FST
Reduction sketch

Example (n=2,p=3,A=1{0,0,1,1,2,2})
Set K=CBp+1)n+1=21
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Results

ProMmiISE ENCcODING BY FST
Reduction sketch

Example (n=2,p=3,A=1{0,0,1,1,2,2})
Set K=CBp+1)n+1=21
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Results

ProMmiISE ENCcODING BY FST
Reduction sketch

Example (n=2,p=3,A=1{0,0,1,1,2,2})
Set K=CBp+1)n+1=21
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Results

ProMmiISE ENCcODING BY FST
Reduction sketch

Example (n=2,p=3,A=1{0,0,1,1,2,2})
Set K=CBp+1)n+1=21
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Results

ProMmiISE ENCcODING BY FST
Reduction sketch

Example (n=2,p=3,A=1{0,0,1,1,2,2})
Set K=CBp+1)n+1=21
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ProMmiISE ENCcODING BY FST
Reduction sketch

Example (n=2,p=3,A=1{0,0,1,1,2,2})
Set K=CBp+1)n+1=21
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ProMmiISE ENCcODING BY FST
Reduction sketch

Example (n=2,p=3,A=1{0,0,1,1,2,2})
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Results

ProMmiISE ENCcODING BY FST
Application

The non-uniform height-2 PATS is NP-hard.

Proof. Let F = (5,5, K, S5) be an instance of PROMISE ENCODING
BY FST, where S5 is a 2K-ary sequence of length n to specify the order
in which the available 2K transitions should be used. We convert F into

. Ss[1] | Ss[2] | --- | S
the height-2, (2K+2)-colored pattern P = 5‘5[[1]] ;[[2]] ;[[nn]] '

ford:p—>qon0

4o o Jdo L ... 4. L Using 2K+2 tile types, one can
9 1 1 assemble P uniquely from a non-
| | uniform seed < F has a solution
0 ! (see left). O

—o
—=
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Results

FPT algorithm for non-uniform, height-h, c-PATS

Let P be a given c-colored pattern of height h and width n.

@ Being of height h, P cannot involve more than ¢ types of column.

@ One type of height-h column can be uniquely self-assembled using h
pairwise-distinct tile types (hard-coding).

@ Column types can be encoded along the x-axis of a non-uniform
seed.

@ Identical columns are assembled in an identical way, while assemblies
of columns of distinct type involve no tile type in common.

Upperbound (valid only for non-uniform seed)

T = hc" tile types are enough to uniquely self-assemble P from a
non-uniform seed.
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Results

FPT algorithm for non-uniform, height-h, c-PATS

Recall T = hc".

@ 4log T + log c bits are enough to specify one tile type.

@ Hence, 4T log cT bits are enough to specify one set of at most T
tile types.

@ Thus, there are at most 2*71°8¢T — (cT)*T sets of at most T tile
types.

Dynamic programming

We can check in O(hT"2)n time if each such set of tile types can
be employed to uniquely self-assemble P.

Consequently, O((cT)*T x hT't2p) = TO(T)p = c<®® n time is
enough.
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Results

Complexity of height-h, c-PATS

Below, n is the width of an input pattern.

h h
OOT NP-hard OOT
g j= 8 NP-hard
& oty .. 2 &
3 2 <" n-time o 3 2
i Z i
2 2
1 1 tile type/color 1 ‘ O(n)-time
......... —»C o
1 2 3 0 1 2 3 0

Non-uniform PATS Uniform PATS
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Results

Uniform PATS

Uniform, height-2, 3-PATs is NP-hard.

Proof.
A variant of PROMISE ENCODING BY FST
— Uniform, height-2, 3-PATs.
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Results

Uniform PATS

Uniform, height-2, 3-PATs is NP-hard.

Proof.
A variant of PROMISE ENCODING BY FST
— Uniform, height-2, 3-PATs.

Remaining time < |Proof]
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Results

Uniform PATS

Uniform, height-2, 3-PATs is NP-hard.

Proof.
A variant of PROMISE ENCODING BY FST
— Uniform, height-2, 3-PATs.

Remaining time < |Proof]

< Springer’s patience (= 12 pages)
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Results

Uniform PATS

Uniform, height-2, 3-PATs is NP-hard.

Proof.
A variant of PROMISE ENCODING BY FST
— Uniform, height-2, 3-PATs.

Remaining time < |Proof]
< Springer’s patience (= 12 pages)
< 1 CPU year.
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Results

Complexity of height-h, c-PATS

Below, n is the width of an input pattern.

h h
OOT NP-hard OOT
g j= 8 NP-hard
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Non-uniform PATS Uniform PATS
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