The complexity of fixed-height patterned tile self-assembly

Shinnosuke Seki1 and Andrew Winslow2

¹ Algorithmic "*Oritatami*" Self-Assembly Lab., University of Electro-Communications, Tokyo, Japan ² Université Libre de Bruxelles, Brussels, Belgium

CIAA 2016, July 19-22

Self-assembly is everywhere!

city

Shinnosuke Seki¹ and Andrew Winslow² The complexity of fixed-height patterned tile self-assembly

virus capsid

An example of self-assembly Lipid bilayer

Water (external environment) affects components (lipids), but does not intend to lead them to the membrane structure.

Introduction

Rectilinear TAS and uniformity of seed Fixed-height pattern assembly Results

DNA self-assembly

Engineering Goal

Driven by

- Watson-Crick complementarity A-T, C-G.
- Thermodynamics
- Kinetics
- . . .

< ∃ →

DNA self-assembly DNA tile implementation

Interactive DNA tiles are implemented *in vitro* as a DNA double-crossover molecule [Winfree et al., *Nature*, 1998]

4 single strands (red, yellow, purple, green), called **sticky ends**, enable the "tile" to interact with other "tiles".

DNA self-assembly Binary counter [Barish et al., PNAS, 2009]

The gray box to the left is the seed (scaffold for assembly process) made of DNA origami [Rothemund, *Nature*, 2006].

DNA self-assembly Binary counter [Barish et al., PNAS, 2009]

The complexity of fixed-height patterned tile self-assembly

Abstract Tile-Assembly Model (aTAM) [Winfree 1998] Abstraction of DNA tile

A square tile type t is an element of $\Gamma \times \Gamma \times \Gamma \times \Gamma \times \mathbb{N}$, where

- Γ is a set of glues (DNA sequences),
- The last integer specifies its color, representing some chemical property.

A 3 1

Rectilinear tile assembly system (RTAS)

The rectilinear TAS (RTAS) is a variant of Winfree's aTAM system suitable for assembling rectangular patterns.

Rectilinear tile assembly system (RTAS)

The rectilinear TAS (RTAS) is a variant of Winfree's aTAM system suitable for assembling rectangular patterns.

• Initial assembly (seed) is of L-shape;

Rectilinear tile assembly system (RTAS)

The rectilinear TAS (RTAS) is a variant of Winfree's aTAM system suitable for assembling rectangular patterns.

- Initial assembly (seed) is of L-shape;
- A tile attaches if both its west and south glues match.

The complexity of fixed-height patterned tile self-assembly

Rectilinear tile assembly system (RTAS)

The rectilinear TAS (RTAS) is a variant of Winfree's aTAM system suitable for assembling rectangular patterns.

- Initial assembly (seed) is of L-shape;
- A tile attaches if both its west and south glues match.

Rectilinear tile assembly system (RTAS)

The rectilinear TAS (RTAS) is a variant of Winfree's aTAM system suitable for assembling rectangular patterns.

- Initial assembly (seed) is of L-shape;
- A tile attaches if both its west and south glues match.

The complexity of fixed-height patterned tile self-assembly

Rectilinear tile assembly system (RTAS) Unique assembly by RTAS

An RTAS is a pair $T = (T, \sigma_L)$, where T a finite set of tile types σ_L an L-shape seed

An RTAS uniquely self-assembles a pattern P if the pattern of any of its terminal assembly is P.

Rectilinear tile assembly system (RTAS) Uniformity

An RTAS is uniform if all the glues on the x-axis of the seed are identical and so are those on the y-axis.

Example

The RTAS to assemble the binary counter was uniform (see right).

$\begin{array}{c} \text{Constant colored } \mathrm{PATS} \\ \text{Definition} \end{array}$

"Any given logic circuit can be formulated as a colored rectangular pattern with tiles, using only a constant number of colors [Czeizler & Popa, DNA 2012]".

c-colored PATS (c-PATS)

GIVEN: a *c*-colored pattern *P* FIND: a minimum RTAS (i.e., as few tile types as possible) that uniquely self-assembles *P*.

伺 ト イヨト イヨト

$\begin{array}{c} \text{Constant colored } \mathrm{PATS} \\ {}_{\text{Hardness}} \end{array}$

Theorem [Kari, Kopecki, Meunier, Patitz, S. ICALP 2015]

2-PATS is NP-hard.

- Computer-assisted proof.
- At the scale of 1-CPU YEAR, called "La plus longue demonstration mathematique de l'Histoire."
- The proof breaks down once height (or width) of input patterns is fixed to some constant.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fixed-height PATS and uniform PATS

These are two new variants of PATS to be considered.

Height-*h* PATS

- GIVEN: a pattern P of height h
 - FIND: a minimum RTAS that uniquely self-assembles *P*.

${\sf Uniform}\,\, {\rm PATS}$

GIVEN: a pattern P

FIND: a minimum uniform RTAS that uniquely self-assembles *P*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Complexity of height-*h*, *c*-PATS

Below, *n* is the width of an input pattern.

Shinnosuke Seki¹ and Andrew Winslow² The complexity of fixed-height patterned tile self-assembly

Min-state finite state transducer

A FST is a tuple (Σ, Q, s_0, δ) , where Σ, Q, s_0 : an alphabet, set of states, and initial state in Q. $\delta \in Q \times \Sigma \rightarrow Q \times \Sigma$: a transition function. An input-output 4-tuple $\delta(p, a) = (q, b)$ is called a (a, b)-transition or *a*-transition

Encoding by FST

GIVEN: $S, S' \in \Sigma^*$ and $K \ge 1$ DECIDE: if \exists a FST with at most K states that transduces S to S'.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Min-state finite state transducer Hardness

The $\boldsymbol{NP}\text{-hardness}$ of $\operatorname{Encoding}$ by FST problem is summarized below.

	Σ	Proof
[Angluin, Inform. Control, 1978]	2	Complicated
[Vazirani & Vazirani, <i>TCS</i> , 1983]	3	Simple
This paper	2	Simple proof based on
		[Vazirani & Vazirani, <i>TCS</i> , 1983]
		for a more restricted problem

Min-state finite state transducer Restricted variant

Encoding by FST

 $\begin{array}{ll} \text{GIVEN:} & S, S' \in \Sigma^* \text{ and } K \geq 1 \\ \text{DECIDE:} & \text{if } \exists \text{ a FST with at most } K \text{ states that transduces} \\ & S \text{ to } S' \end{array}$

I ≡ ▶ < </p>

Min-state finite state transducer Restricted variant

PROMISE ENCODING BY FST

GIVEN: $S, S' \in \Sigma^*$ and $K \ge 1$

DECIDE: if \exists a FST with at most K states that transduces S to S' and satisfies the following promises:

- Each state has at most one incoming 0-transition and at most one incoming 1-transition.
- When transducing S to S':
 - K-1 (0, 0)-transitions, K (1, 1)-transitions, and 1 (0, 1)-transition is used.
 - The transitions are traversed in a unique specified order given as a part of the input.

(人間) ト く ヨ ト く ヨ ト

PROMISE ENCODING BY FST Proof

We will propose a reduction from 3-PARTITION to PROMISE ENCODING BY FST.

3-PARTITION

GIVEN: a multiset $A = \{a_1, a_2, \dots, a_{3n}\}$ of integers with $\sum_{a_i \in A} a_i/n = p$ and $p/4 < a_i < p/2$, DECIDE: if \exists a partition of A into n sets, each with sum p

Theorem [Garey & Johnson 1975]

3-PARTITION is strongly NP-hard.

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $\begin{array}{l} PROMISE \ ENCODING \ BY \ FST \\ \ Reduction \ sketch \end{array}$

Example $(n = 2, p = 3, A = \{0, 0, 1, 1, 2, 2\})$ Set K = (3p + 1)n + 1 = 21.

S =

S' =

→ Ξ → < Ξ</p>

 $\begin{array}{l} PROMISE \ ENCODING \ BY \ FST \\ \ Reduction \ sketch \end{array}$

Example $(n = 2, p = 3, A = \{0, 0, 1, 1, 2, 2\})$ Set K = (3p + 1)n + 1 = 21.

 $S = 0^{\kappa - 1} 0$

 $S' = 0^{\kappa - 1}$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

 $\begin{array}{l} PROMISE \ ENCODING \ BY \ FST \\ \ Reduction \ sketch \end{array}$

Example $(n = 2, p = 3, A = \{0, 0, 1, 1, 2, 2\})$ Set K = (3p + 1)n + 1 = 21.

 $S = 0^{K-1} 0 0^{K-1}$

$$S' = 0^{K-1} 10^{K-1}$$

 $\begin{array}{l} PROMISE \ ENCODING \ BY \ FST \\ \ Reduction \ sketch \end{array}$

Example $(n = 2, p = 3, A = \{0, 0, 1, 1, 2, 2\})$ Set K = (3p + 1)n + 1 = 21.

 $S = 0^{K-1} 00^{K-1} \prod_{i=0}^{n} (0^{2pn+(p+1)i} 10^{K-1-(2pn+(p+1)i)} 0)$

$$S' = 0^{K-1} 10^{K-1} \prod_{i=0}^{n} (0^{2pn+(p+1)i} 10^{K-1-(2pn+(p+1)i)} 1)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\begin{array}{l} PROMISE \ ENCODING \ BY \ FST \\ \ Reduction \ sketch \end{array}$

Example $(n = 2, p = 3, A = \{0, 0, 1, 1, 2, 2\})$ Set K = (3p + 1)n + 1 = 21.

 $S = 0^{K-1} 00^{K-1} \prod_{i=0}^{n} (0^{2pn+(p+1)i} 10^{K-1-(2pn+(p+1)i)} 0) \prod_{i=0}^{np-1} (0^{2j} 10^{K-1-(2j+1)} 0)$

$$S' = 0^{K-1} 10^{K-1} \prod_{i=0}^{n} (0^{2pn+(p+1)i} 10^{K-1-(2pn+(p+1)i)} 1) \prod_{j=0}^{np-1} (0^{2j} 10^{K-1-(2j+1)} 1)$$

 $\begin{array}{l} PROMISE \ ENCODING \ BY \ FST \\ \ Reduction \ sketch \end{array}$

Example $(n = 2, p = 3, A = \{0, 0, 1, 1, 2, 2\})$ Set K = (3p + 1)n + 1 = 21.

 $S = 0^{K-1} 00^{K-1} \prod_{i=0}^{n} (0^{2pn+(p+1)i} 10^{K-1-(2pn+(p+1)i)} 0) \prod_{i=0}^{np-1} (0^{2j} 10^{K-1-(2j+1)} 0)$

$$S' = 0^{K-1} 10^{K-1} \prod_{i=0}^{n} (0^{2pn+(p+1)i} 10^{K-1-(2pn+(p+1)i)} 1) \prod_{j=0}^{np-1} (0^{2j} 10^{K-1-(2j+1)} 1)$$

 $\begin{array}{l} PROMISE \ ENCODING \ BY \ FST \\ \ Reduction \ sketch \end{array}$

Example $(n = 2, p = 3, A = \{0, 0, 1, 1, 2, 2\})$ Set K = (3p + 1)n + 1 = 21.

Shinnosuke Seki¹ and Andrew Winslow² The complexity of fixed-height patterned tile self-assembly

・ 同 ト ・ ヨ ト ・ ヨ ト

3

 $\begin{array}{l} PROMISE \ ENCODING \ BY \ FST \\ \ Reduction \ sketch \end{array}$

Example $(n = 2, p = 3, A = \{0, 0, 1, 1, 2, 2\})$ Set K = (3p + 1)n + 1 = 21.

Shinnosuke Seki¹ and Andrew Winslow² The complexity of fixed-height patterned tile self-assembly

・ 同 ト ・ ヨ ト ・ ヨ ト

3

 $\begin{array}{l} PROMISE \ ENCODING \ BY \ FST \\ \ Reduction \ sketch \end{array}$

Example $(n = 2, p = 3, A = \{0, 0, 1, 1, 2, 2\})$ Set K = (3p + 1)n + 1 = 21.

$$S = 0^{K-1}00^{K-1}\prod_{i=0}^{n} (0^{2pn+(p+1)i}10^{K-1-(2pn+(p+1)i)}0)\prod_{j=0}^{np-1} (0^{2j}10^{K-1-(2j+1)}0) \prod_{j=0}^{np-1} (0^{2j}10^{K-1-(2j+1)}0)^{K-1}10^{K-1-2j}0)^{K-1}1010^{14}00^{K}11010^{10}0$$

$$S' = 0^{K-1}10^{K-1}\prod_{i=0}^{n} (0^{2pn+(p+1)i}10^{K-1-(2pn+(p+1)i)}1)\prod_{j=0}^{np-1} (0^{2j}10^{K-1-(2j+1)}1) \prod_{j=0}^{np-1} (0^{2j}10^{K-1-(2j+1)}1)^{K-1-2j}10^{K-1-2j}1$$

Shinnosuke Seki¹ and Andrew Winslow² The complexity of fixed-height patterned tile self-assembly

- 4 同 ト 4 ヨ ト 4 ヨ ト

э

PROMISE ENCODING BY FST Application

Theorem

The non-uniform height-2 PATS is **NP**-hard.

Proof. Let $F = (S, S', K, S_{\delta})$ be an instance of PROMISE ENCODING BY FST, where S_{δ} is a 2*K*-ary sequence of length *n* to specify the order in which the available 2*K* transitions should be used. We convert *F* into the height-2, (2K+2)-colored pattern $P = \frac{S_{\delta}[1] \quad S_{\delta}[2] \quad \cdots \quad S_{\delta}[n]}{S[1] \quad S[2] \quad \cdots \quad S[n]}$.

Using 2K+2 tile types, one can assemble *P* uniquely from a nonuniform seed \Leftrightarrow *F* has a solution (see left).

・ 同 ト ・ ヨ ト ・ ヨ ト

FPT algorithm for non-uniform, height-*h*, *c*-PATS

Let P be a given c-colored pattern of height h and width n.

- Being of height h, P cannot involve more than c^h types of column.
- One type of height-*h* column can be uniquely self-assembled using *h* pairwise-distinct tile types (hard-coding).
- Column types can be encoded along the x-axis of a non-uniform seed.
- Identical columns are assembled in an identical way, while assemblies of columns of distinct type involve no tile type in common.

Upperbound (valid only for non-uniform seed)

 $T = hc^h$ tile types are enough to uniquely self-assemble P from a non-uniform seed.

FPT algorithm for non-uniform, height-*h*, *c*-PATS

Recall $T = hc^h$.

- $4 \log T + \log c$ bits are enough to specify one tile type.
- Hence, $4T \log cT$ bits are enough to specify one set of at most T tile types.
- Thus, there are at most $2^{4T \log cT} = (cT)^{4T}$ sets of at most T tile types.

Dynamic programming

We can check in $O(hT^{h+2})n$ time if each such set of tile types can be employed to uniquely self-assemble P.

Consequently, $O((cT)^{4T} \times hT^{h+2}n) = T^{O(T)}n = c^{c^{O(h)}}n$ time is enough.

Complexity of height-*h*, *c*-PATS

Below, *n* is the width of an input pattern.

Shinnosuke Seki¹ and Andrew Winslow² The complexity of fixed-height patterned tile self-assembly

Uniform PATS

Theorem

Uniform, height-2, 3-PATS is **NP**-hard.

Proof.

A variant of PROMISE ENCODING BY $\ensuremath{\operatorname{FST}}$

 \rightarrow Uniform, height-2, 3-PATS.

同 ト イ ヨ ト イ ヨ ト

Uniform PATS

Theorem

Uniform, height-2, 3-PATS is **NP**-hard.

Proof.

A variant of Promise Encoding by FST

 \rightarrow Uniform, height-2, 3-PATS.

Remaining time < |Proof|

伺 ト く ヨ ト く ヨ ト

Uniform PATS

Theorem

Uniform, height-2, 3-PATS is **NP**-hard.

Proof.

A variant of PROMISE ENCODING BY FST

 \rightarrow Uniform, height-2, 3-PATS.

Remaining time < |Proof| \leq Springer's patience (\approx 12 pages)

・ 同 ト ・ ヨ ト ・ ヨ ト

Uniform PATS

Theorem

Uniform, height-2, 3-PATS is **NP**-hard.

Proof.

A variant of Promise Encoding by FST

 \rightarrow Uniform, height-2, 3-PATS.

Remaining time < |Proof| \leq Springer's patience (\approx 12 pages) \ll 1 CPU year.

(人間) ト く ヨ ト く ヨ ト

Complexity of height-*h*, *c*-PATS

Below, *n* is the width of an input pattern.

Shinnosuke Seki¹ and Andrew Winslow² The complexity of fixed-height patterned tile self-assembly

Thanks!!

This work is in part supported by

- JST Program to Disseminate Tenure-Tracking System, 6F36
- JSPS Grant-in-Aid for Young Scientists (A), 16H05854
- JSPS Grant-in-Aid for Research Activity Start-Up, 15H06212

3 b. 4

References I

D. Angluin.

On the complexity of minimum inference of regular sets. *Inform. Control* 39: 337-350, 1978

R. D. Barish, R. Schulman, P. W. K. Rothemund, and E. Winfree.

An information-bearing seed for nucleating algorithmic self-assembly.

PNAS 106(15): 6054-6059, 2009.

E. Czeizler and A. Popa.

Synthesizing minimal tile sets for complex patterns in the framework of patterned DNA self-assembly. *DNA 18*, LNCS 7433, pp. 58-72, Springer, 2012.

글 🖌 🖌 글 🕨

References II

M. R. Garey and D. S. Johnson.

Complexity results for multiprocessor scheduling under resource constraints.

SIAM J. Comput. 4(4): 397-411, 1975.

- L. Kari, S. Kopecki, P-E. Meunier, M. J. Patitz, and S. Seki. Binary pattern tile set synthesis is NP-hard. *ICALP 2015*, LNCS 9134, pp. 1022-1034, Springer, 2015.
- P. W. K. Rothemund.

Folding DNA to create nanoscale shapes and patterns. *Nature* 440: 297-302, 2006.

伺 ト イ ヨ ト イ ヨ ト

References III

U. V. Vazirani and V. V. Vazirani.

A natural encoding scheme proved probabilistic polynomial complete.

Theor. Comput. Sci. 24(3): 291-300, 1983.

E. Winfree.

E. Winnee.

Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology, June 1998.

E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-assembly of two-dimensional DNA crystals. *Nature* 394: 539-544, 1998.

伺 ト イ ヨ ト イ ヨ ト